ran

ce as a power series function efficients A, B, C may be obicients are needed to express

RESISTIVITY	OF	POTASSIUN
		*

(3)(4)1.000 2.3601 2.0611.0351.872 1.0581.7931.070 1.791 1.0641.780 1.031 1.721 1.0311.689 1.0751.6851.0671.5381.0731.5321.0850.5651.122 1.1500.5561.113 0.4711.144 0.4141.138 0.3791.1410.2881.168

at 273.15 °K.

pendix A. The results of the illustrated in figures 1 and 2. ertainties in the equation of the based on the supposition pressure required to increase to pressure, is 3 %.

those for potassium. Below the martensitic transformacimens studied are given in

The effect of pressure on electrical resistance

TABLE 4. THE EFFECT OF PRESSURE ON THE IDEAL RESISTIVITY OF POTASSIUM

	$-\partial \ln \rho_i / \partial p$	-A	В	-C			
1' (°K)	$(10^{-5} \text{ atm}^{-1})$	$(10^{-5} \text{ atm}^{-1})$	$(10^{-9} \text{ atm}^{-2})$	$(10^{-13} \text{ atm}^{-3})$	$\partial \ln \rho_i^\prime / \partial \ln V$		
		Specimer	n K (2)				
15.4_{0}	$24 \cdot 1 \pm 0 \cdot 4$	23.2 ± 0.3	37 ± 5	60 ± 100	$8{\cdot}5_5\pm0{\cdot}15$		
20.35	22.8 ± 0.3	21.9 ± 0.2	29 ± 5	12 ± 100	$8 \cdot 1_5 \pm 0 \cdot 1$		
29.8	20.6 ± 0.2	$19.6_{5} \pm 0.2$	23 ± 2	11 ± 38	$7 \cdot 3_2 \pm 0 \cdot 1$		
61.1	17.0 ± 0.2	16.0 ± 0.2	17 ± 1	12 ± 29	$6 \cdot 0_2 \pm 0 \cdot 1$		
78.0	16.7 ± 0.2	15.7 ± 0.2	19 ± 2	$15\pm~20$	$5 \cdot 7_4 \pm 0 \cdot 1$		
116.7	$16.9_5 \pm 0.2$	$15 \cdot 9_5 \pm 0 \cdot 2$	17 ± 1	5 ± 18	$5.7_{9} \pm 0.1$		
196-6	18.1 ± 0.1	17.0 ± 0.1	23 ± 2	17 ± 38	$5 \cdot 6_4 \pm 0 \cdot 1$		
273.7	19.0 ± 0.1	17.9 ± 0.1	22 ± 1	11 ± 41	$5 \cdot 7_5 \pm 0 \cdot 15$		
308.8	20.1 ± 0.2	18.9 ± 0.2	27 ± 1	18 ± 20	$5 \cdot 6_0 \pm 0 \cdot 15$		
308.8*			_	_	$5{\cdot}7_2{}^*\pm0{\cdot}05$		
Specimen K (5)							
4·20†	30 ± 3				10.7 ± 1		
20.4_{0}	$22 \cdot 8_5 \pm 0 \cdot 2$	21.9 ± 0.2	28 ± 5	-9 ± 100	$8 \cdot 1_6 \pm 0 \cdot 1$		
36.5	19.7 ± 0.2	18.8 ± 0.2	25 ± 2	23 ± 40	$7 \cdot 0_3 \pm 0 \cdot 1$		
79.2	16.8 ± 0.2	15.8 ± 0.2	19 ± 2	13 ± 50	$5 \cdot 8_0 \pm 0 \cdot 1$		
$273 \cdot 1_{5}$	19.2 ± 0.1	18.1 ± 0.1	26 ± 1	21 ± 41	$5{\cdot}5_9\pm0{\cdot}15$		
		Bridgman (1921, 1925)				
273·15	$20.4 \pm 0.5 \pm$						
298.0	19.6 ± 0.5	· · · · ·					
333.0	21.1 ± 0.5				_		

* This point corresponds to the density at 308.8 °K.

† A large correction was necessary for the effect of pressure on residual resistivity. ‡ Estimated error.

TABLE 5. DETAILS OF THE SODIUM SPECIMENS

specimen	$R_{4\cdot 2 \ \mathrm{ok}}/R_{273 \ \mathrm{ok}}$	comments	source of material
Na (1) Na (2)	$\begin{array}{c} 6{\cdot}9\times10^{-4} \\ 7{\cdot}1\times10^{-4} \end{array}$	<u> </u>	laboratory stock
Na (3) Na (4)	$4 \cdot 0 \times 10^{-4}$ $2 \cdot 0 \times 10^{-4}$	specimen in	N. V. Phillips,
Na (5)	$2{\boldsymbol{\cdot}}9\times10^{-4}$	glass capillary*	Eindhoven
Na (6)†	3.0×10^{-4}		Messrs A. D. Mackay & Co.,
Na (7) Na (9)	3.8×10^{-4} 7.3×10^{-4}	J	laboratory stock

* We are grateful to Dr S. B. Woods for the loan of this specimen.

[†] The absolute resistivity of a specimen from this stock was $4\cdot7_5 \times 10^{-6} \Omega$ cm at 22·0 °C (corrected for residual resistivity). The precision of this result is about 1 %. Previous values at this temperature are $4\cdot7_0 \times 10^{-6} \Omega$ cm (Hackspill 1910) and $4\cdot8_4 \pm 0\cdot1 \times 10^{-6} \Omega$ cm (Bradshaw & Pearson 1956).